
SCHEDA SPERIMENTALE: Moto rettilineo uniforme con la rotaia a cuscino d'aria

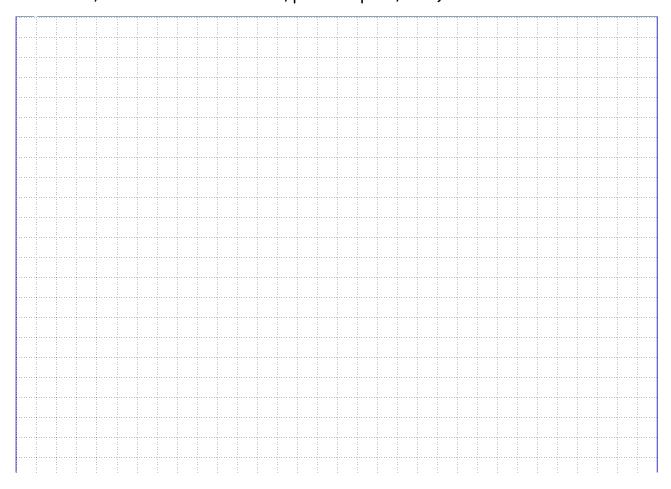
Dati CINEMATICI:

 δs = larghezza della bandierina (misurare col calibro in mm) =

Iterazione #1

Traguardo #	† (s)	s (m)	δ t (ms)	V (m/s)= δs/δt
1				
2				
3				
4				

Iterazione #2


Traguardo #	† (s)	s (m)	δ t (ms)	V (m/s)= δs/δt
1				
2				
3				
4				

Iterazione #3

Traguardo #	† (s)	s (m)	δ t (ms)	V (m/s)= δ s/ δ t
1				
2				
3				
4				

Dati DINAMICI (utili se si vuol calcolare il valore teorico della velocità finale)
Massa del carrello (kg):; Massa del pesetto (kg):; distanza fra la
posizione iniziale del pesetto e il piattello (m):

Grafico Spazio-Tempo del moto (sovrapporre i tre grafici sullo stesso piano cartesiano, usare tre simboli diversi, per esempio *, + e °)

(Usare la scala più opportuna).

- Verificare che i punti rappresentativi del moto stanno su una retta, e che quindi il moto è rettilineo e uniforme con buona approssimazione.
- Calcolare il coefficiente angolare della retta (velocità media) e verificare che è uguale alla velocità istantanea, calcolata con δs e δt , con buona approssimazione.